Updates David Kapukchyan **Cold QCD Meeting** November 15, 2016 ### Recap/Review - Goal is to study how the flux return thickness will affect the energy resolution of the forward calorimeters - Ran Simulations with 30 GeV pions(π^-) with $\eta = 2$. - Collected 100,000 entries - Started by looking only at histograms of the reconstructed energy from the calorimeters and tried some fits to this data - The fits were non Gaussian at the thickness of interest (10.2 cm) - Next step was to look at the energy deposited in flux return itself and/or other places the energy can go # The Incorporated Energies from different sources in Flux Return Study - Incorported the following energies - "e": Energy absorbed by the Calorimeters - "e_FR_p": Energy absorbed by the forward flux return, i.e. η>0 - "e_FR_m": Energy absorbed by the negative flux return, i.e η <0 - "e_BH1": Energy deposited in into the black hole in the η =0? - "e_BH_p": Energy deposited into the black hole in the forward region - "e_BH_m": Energy deposited into the black hole in the negative region - "e_sum": Total energy from all 6 sources above - Made plots of all seven energies for multiple thicknesses - Plots can be found in the following slides ### 10.2 cm Thickness Plots All histograms have 100,000 entries ### Counts vs. Deposited Energy in e ### Counts vs. Deposited Energy in e_FR_p ### Counts vs. Deposited Energy in e_FR_m ### Counts vs. Deposited Energy in e_BH1 ### Counts vs. Deposited Energy in e_BH_p ### Counts vs. Deposited Energy in e_BH_m ### Counts vs. Deposited Energy in e_sum ### Observations - Mostly behaving as expected - The η < 0 is zero or almost zero as expected - Black holes absorb very little energy compared to the Calorimeters and Flux Returns # Using this result to Characterize the Flux Return - Next step is to make plots of E/E_input vs. Flux Return Thickness - The E will be the mean of the histogram for the energies from the calorimeters, Flux Return, etc. - E_input will be the initial energy of the incoming pion - Idea is to see whether the resolution of the Calorimeters exceed that of the Flux Return - So far only did it for 30 GeV pions #### E_Mean/E_Input vs. Flux Return Thickness #### E_RMS/E_Input vs. Flux Return Thickness #### E_FR_p_Mean/E_Input vs. Flux Return Thickness #### E_FR_p_RMS/E_Input vs. Flux Return Thickness ### Conclusions/Goals - Energies deposited in the various materials are behaving as expected - The mean energy in the calorimeters are decreasing and the RMS is increasing with respect to thickness as expected - The mean energy and RMS are increasing with thickness as expected since the more material the larger the amount of energy deposited - Will continue to run simulations for pions at different energies. - Begin to characterize these results to how how flux return is affecting the energy resolution ## Backup Slides Contain the other thickness values More can be requested if needed ### 5.1 cm Thickness ### Counts vs. Deposited Energy in e ### Counts vs. Deposited Energy in e_FR_p ### Counts vs. Deposited Energy in e_FR_m ### Counts vs. Deposited Energy in e_BH1 ### Counts vs. Deposited Energy in e_BH_p ### Counts vs. Deposited Energy in e_BH_m ### Counts vs. Deposited Energy in e_sum ### 2.55 cm ### Counts vs. Deposited Energy in e ### Counts vs. Deposited Energy in e_FR_p ### Counts vs. Deposited Energy in e_FR_m ### Counts vs. Deposited Energy in e_BH1 ### Counts vs. Deposited Energy in e_BH_p ### Counts vs. Deposited Energy in e_BH_m ### Counts vs. Deposited Energy in e_sum